
pytimers
Release 3.0

Michal Filippi

Apr 12, 2023

CONTENTS

1 Getting started 3
1.1 Requirements . 3
1.2 Installation . 3

2 Usage 5
2.1 Timer Decorator . 5

2.1.1 Class Methods and Static methods . 6
2.2 Timer Context Manager . 6
2.3 Triggers . 8

2.3.1 Function Based Trigger . 8
2.3.2 BaseTrigger Subclass Trigger . 9

3 API Reference 11
3.1 Timers . 11
3.2 Triggers . 12

4 Changelog 15
4.1 Release 3.1 . 15
4.2 Release 3.0 . 15

5 Indices and Tables 17

Index 19

i

ii

pytimers, Release 3.0

Welcome to the Pytimers documentation page.

Pytimers is a python micro library that allows you to quickly measure time to run functions, methods or individual
blocks of codes. Here’s a quick demo.

import logging
from time import sleep

from pytimers import timer

logging.basicConfig(level=logging.INFO)

@timer
def foo() -> None:

print("Some heavy lifting.")
sleep(2)

if __name__ == "__main__":

print("Let's call the function decorated with timer.")
foo()

print("Use timer context manager.")
with timer.label("sleeping block"):

print("Some more work to do.")
sleep(1)

Let's call the function decorated with timer.
Some heavy lifting.
INFO:pytimers.triggers.logger_trigger:Finished foo in 2s 0.494ms [2.0s].
Use timer context manager.
Some more work to do.
INFO:pytimers.triggers.logger_trigger:Finished sleeping block in 1s 1.247ms [1.001s].

For details go through the following pages.

CONTENTS 1

pytimers, Release 3.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 Requirements

Pytimers require Python 3.7+ for contextvars.ContextVar and decorator>=4.0.0 library.

1.2 Installation

You can use PyPi to install the library directly using:

pip install pytimers

3

https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar
https://github.com/micheles/decorator

pytimers, Release 3.0

4 Chapter 1. Getting started

CHAPTER

TWO

USAGE

The whole purpose of this micro library is to provide easy and quick access to measuring the time it takes to run a
piece of code without populating the codebase with reoccurring and unnecessary variables. The library allows you to
measure the run time of your code in two ways. Using decorators for callables and using context manager to measure
run time of any code block using the with statement.

The timer on it’s own does not do anything unless provided with triggers (see Triggers). In the following exam-
ples we will be using pytimers.timer which is a provided instance of pytimers.Timer containing single trigger
that logs measured time to std output using standard logging library logging using a trigger instance of pytimers.
LoggerTrigger.

2.1 Timer Decorator

The timer decorator can be applied to both synchronous and asynchronous functions and methods. PyTimers leverage
python library decorator to make sure decorating will preserve the function/method signature, name and docstring.

Note: Decorating classes is currently not supported and will raise TypeError.

import logging
from time import sleep

from pytimers import timer

logging.basicConfig(level=logging.INFO)

@timer
def func(*args: int):

print("Hello from func.")
sleep(1)
return sum(args)

if __name__ == "__main__":
func(1, 2, 3)

Hello from func.
INFO:pytimers.triggers.logger_trigger:Finished func in 1s 1.061ms [1.001s].

5

https://docs.python.org/3/library/logging.html#module-logging
https://github.com/micheles/decorator
https://docs.python.org/3/library/exceptions.html#TypeError

pytimers, Release 3.0

2.1.1 Class Methods and Static methods

To combine timer decorator with decorators staticmethod() and classmethod() you have to first apply timer
decorator. Applying the decorators the other way around will result in TypeError exception.

import logging
from time import sleep

from pytimers import timer

logging.basicConfig(level=logging.INFO)

class Foo:
@staticmethod
@timer
def method(*args: int):

print("Hello from static method.")
sleep(1)
return sum(args)

if __name__ == "__main__":
foo = Foo()
foo.method(1, 2, 3)

Hello from static method.
INFO:pytimers.triggers.logger_trigger:Finished Foo.method in 1s 1.025ms [1.001s].

2.2 Timer Context Manager

To measure time of any piece of code not enclosed in a callable object you can use timer context manager capabilities.

import logging
from time import sleep

from pytimers import timer

logging.basicConfig(level=logging.INFO)

if __name__ == "__main__":
with timer:

print("Hello from code block.")
sleep(1)

Hello from code block.
INFO:pytimers.triggers.logger_trigger:Finished code block in 1s 1.143ms [1.001s].

Entering the context manager actually returns an instance of a pytimers.clock.Clock . This allows you to access
the current duration from inside of the code block but also the measured duration after the context manager is closed.

6 Chapter 2. Usage

https://docs.python.org/3/library/functions.html#staticmethod
https://docs.python.org/3/library/functions.html#classmethod
https://docs.python.org/3/library/exceptions.html#TypeError

pytimers, Release 3.0

import logging
from time import sleep

from pytimers import timer

logging.basicConfig(level=logging.INFO)

if __name__ == "__main__":
with timer as t:

sleep(1)
print(f"We want to run this under 5s and so far it took {t.current_duration}.")
sleep(1)

print(f"We still had {5 - t.duration}s remaining.")

We want to run this under 5s and so far it took 1.0001475979988754.
INFO:pytimers.triggers.logger_trigger:Finished code block in 2s 1.384ms [2.001s].
We still had 2.998615708000216s remaining.

Block of code can also be named to increase log readability.

import logging
from time import sleep

from pytimers import timer

logging.basicConfig(level=logging.INFO)

if __name__ == "__main__":
with timer.label("data processing pipeline"):

print("Hello from code block.")
sleep(1)

Hello from code block.
INFO:pytimers.triggers.logger_trigger:Finished data processing pipeline in 1s 0.625ms [1.
→˓001s].

Timer context manager also allows you to stack context managers freely without a worry of interference.

import logging
from time import sleep

from pytimers import timer

logging.basicConfig(level=logging.INFO)

if __name__ == "__main__":
with timer.label("data collecting pipeline"):

print("Hello from code block n.1.")
sleep(1)
with timer:

print("Hello from code block n.2.")
sleep(1)

(continues on next page)

2.2. Timer Context Manager 7

pytimers, Release 3.0

(continued from previous page)

with timer.label("data processing pipeline"):
print("Hello from code block n.3.")
sleep(1)

Hello from code block n.1.
Hello from code block n.2.
Hello from code block n.3.
INFO:pytimers.triggers.logger_trigger:Finished data processing pipeline in 1s 1.207ms [1.
→˓001s].
INFO:pytimers.triggers.logger_trigger:Finished code block in 2s 2.895ms [2.003s].
INFO:pytimers.triggers.logger_trigger:Finished data collecting pipeline in 3s 4.176ms [3.
→˓004s].

Note: Timer context manager fully supports async code execution using contextvars.ContextVar.

2.3 Triggers

Triggers are an abstraction for the action performed after each timer is finished. The simplest trigger can just log the
measured time using standard logging library. Trigger doing just that is already provided in the library as pytimers.
LoggerTrigger.

Triggers can be implemented in two ways. Either using a function with keywords arguments duration_s: float,
decorator: bool, label: str or by defining a pytimers.BaseTrigger subclass.

The following two examples shows how to implement a trivial custom trigger using both methods.

2.3.1 Function Based Trigger

import logging
from time import sleep

from pytimers import Timer

def custom_trigger(duration_s: float, decorator: bool, label: str):
print(f"Measured duration is {duration_s}s.")

if __name__ == "__main__":
timer = Timer([custom_trigger])

with timer:
sleep(1)

Measured duration is 1.0010350150005252s.

8 Chapter 2. Usage

https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar
https://docs.python.org/3/library/logging.html#module-logging

pytimers, Release 3.0

2.3.2 BaseTrigger Subclass Trigger

import logging
from time import sleep
from typing import Optional

from pytimers import Timer, BaseTrigger

class CustomTrigger(BaseTrigger):
def __call__(

self,
duration_s: float,
decorator: bool,
label: Optional[str] = None,

) -> None:
print(f"Measured duration is {duration_s}s.")

if __name__ == "__main__":
timer = Timer([CustomTrigger()])

with timer:
sleep(1)

Measured duration is 1.0010350150005252s.

2.3. Triggers 9

pytimers, Release 3.0

10 Chapter 2. Usage

CHAPTER

THREE

API REFERENCE

If you are looking for information on a specific class or method, this part of the documentation is for you.

3.1 Timers

class pytimers.Timer(triggers: Optional[Iterable[BaseTrigger | Callable[[float, bool, Optional[str]], Any]]] =
None)

Initializes Timer object with a set of triggers to be applied after the timer finishes.

Parameters
triggers – An iterable of callables to be called after the timer finishes. All triggers should ac-
cept keywords arguments duration_s: float, decorator: bool, label: str. Py-
Timers also provide an abstract class BaseTrigger to help with trigger interface implementa-
tion. See the BaseTrigger for more details. Any instance of BaseTrigger subclass is a valid
trigger and can be passed to the argument triggers.

label(text: str)→ Timer
Sets label for the next timed code block. This label propagates to all triggers once the context managers is
closed.

Parameters
text – Code block label text.

Returns
Returns self. This makes possible to call the method directly inside context manager with
statement.

named(name: str)→ Timer
This method only ensures backwards compatibility. Use pytimers.Timer.label() instead.

Deprecated since version 3.0.

class pytimers.clock.Clock(label: Optional[str])

current_duration(precision: Optional[int] = None)→ float
Calculates the current duration elapsed since the clock was started. This property can be used inside a
timed code block.

Parameters
precision – Number of decimal places of the returned time. If set to None the full precision
is returned.

Returns
Measured time in seconds between start of the clock and the method call.

11

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pytimers, Release 3.0

duration(precision: Optional[int] = None)→ float
Exposes measured time of the clock. You can use this method to access the measured time even after the
context manager is closed. This property should never be used directly inside a timed code block as it would
raise an pytimers.exceptions.ClockStillRunning exception.

Parameters
precision – Number of decimal places of the returned time. If set to None the full precision
is returned.

Returns
Measured time in seconds between start and stop of the clock.

Raises
pytimers.exceptions.ClockStillRunning – Clock has to be stopped before accessing
elapsed time.

stop()→ None
Stops the running clock.

exception pytimers.exceptions.ClockStillRunning

Custom exception to be raised while accessing properties of pytimers.clock.Clock before being stopped.

3.2 Triggers

class pytimers.BaseTrigger

This class provides timer trigger abstraction. Custom triggers can be implemented using simple functions but
subclassing this abstract class is the preferred way. Any custom implementation has to override pytimers.
BaseTrigger.__call__() method where the trigger logic should be provided.

abstract __call__(duration_s: float, decorator: bool, label: Optional[str] = None)→ None
This is a trigger action entrypoint. This method is called in pytimers.Timer once the timer stops.

Parameters

• duration_s – The measured duration in seconds.

• decorator – True if the timer was used as a decorator for callable. False if used as a
context manager for timing code blocks.

• label – The label of the measured code block provided by client before entering the context
manager. For decorator usage this value is set to the callable name.

static humanized_duration(duration_s: float, precision: int = 0)→ str
This method provides formatter for human-readable duration with hours being the highest level of the
format.

Parameters

• duration_s – The duration in seconds to be formatted.

• precision – Number of decimal places for milliseconds.

Returns
Human-readable duration as a string.

class pytimers.LoggerTrigger(level: int = 20, template: str = 'Finished ${label} in ${humanized_duration}
[${duration}s].', precision: int = 3, humanized_precision: int = 3,
default_code_block_label: str = 'code block')

Provided trigger class for logging the measured duration using std logging library.

12 Chapter 3. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pytimers, Release 3.0

Parameters

• level – Log level (as understood by the standard logging library logging) used for the
message.

• template – Message template string containing placeholders for label, duration and/or hu-
manized_duration.

• precision – Number of decimal places for the message duration in seconds.

• humanized_precision – Number of decimal places for milliseconds in human-readable
duration in the message.

• default_code_block_label – Label used for code blocks with missing label.

3.2. Triggers 13

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/string.html#template-strings

pytimers, Release 3.0

14 Chapter 3. API Reference

CHAPTER

FOUR

CHANGELOG

4.1 Release 3.1

• Added py.typed file to mark full type checking compliance.

• Created manually triggered release pipeline to Test PyPi.

4.2 Release 3.0

• Implemented support for async context manage usage using contextvars.ContextVar.

• Context manager now returns pytimers.clock.Clock to expose pytimers.clock.Clock.duration() and
pytimers.clock.Clock.current_duration().

• Logging moved outside of the pytimers.Timer class and implemented as a separate trigger.

• Deprecating pytimers.Timer.named() for pytimers.Timer.label().

• Sphinx documentation added.

15

https://test.pypi.org/project/pytimers/
https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar

pytimers, Release 3.0

16 Chapter 4. Changelog

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

17

pytimers, Release 3.0

18 Chapter 5. Indices and Tables

INDEX

Symbols
__call__() (pytimers.BaseTrigger method), 12

B
BaseTrigger (class in pytimers), 12

C
Clock (class in pytimers.clock), 11
ClockStillRunning, 12
current_duration() (pytimers.clock.Clock method),

11

D
duration() (pytimers.clock.Clock method), 11

H
humanized_duration() (pytimers.BaseTrigger static

method), 12

L
label() (pytimers.Timer method), 11
LoggerTrigger (class in pytimers), 12

N
named() (pytimers.Timer method), 11

S
stop() (pytimers.clock.Clock method), 12

T
Timer (class in pytimers), 11

19

	Getting started
	Requirements
	Installation

	Usage
	Timer Decorator
	Class Methods and Static methods

	Timer Context Manager
	Triggers
	Function Based Trigger
	BaseTrigger Subclass Trigger

	API Reference
	Timers
	Triggers

	Changelog
	Release 3.1
	Release 3.0

	Indices and Tables
	Index

